Skip to main content
Log in

Modeling carbon accumulation in Rocky Mountain fens

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Despite the importance of peatlands in the global carbon cycle, no widely applicable ecosystem model exists for peatlands. Simulations of three montane fens in Colorado, USA were conducted to test the capabilities of the CENTURY ecosystem model to simulate 1) long-term carbon accumulation and 2) short-term changes in carbon accumulation due to hydrologic changes. The CENTURY model was calibrated to simulate long-term carbon accumulation in two fens for up to 10,000 years by adjusting three variables that represent anaerobic soil conditions. CENTURY was unable to simulate long-term carbon accumulation in a third fen using settings for the two calibrated fens. However, CENTURY correctly simulated total carbon storage by adjusting two of the three anaerobic variables. A sensitivity analysis revealed that carbon accumulation in CENTURY is highly sensitive to anaerobic soil conditions. CENTURY predicted that half of the fen peat is composed of structural root material. The majority of the remaining peat was composed of recalcitrant slow and passive soil organic matter. Precipitation levels were altered to determine if CENTURY could predict the change in carbon accumulation rates due to periodic drier conditions. The simulated drying scenario predicted an average carbon loss of 70 g C m−2 yr−1 during the 100-year simulation. The loss of carbon occurred despite plant production increasing from an average of 249 g C m−2 yr−1 to 391 g C m−2 yr−1. Slightly more than 90% of the carbon lost was from the structural root pool and slow organic matter pool, while there was no carbon loss or a slight net carbon gain in the passive organic matter pool and above-ground structural and metabolic pools. Despite several shortcomings, our results indicate that an ecosystem model, such as CENTURY, can be useful for simulating carbon dynamics in peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Armentano, T. V. and E. S. Menges. 1986. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. Journal of Ecology 74:755–774.

    Article  CAS  Google Scholar 

  • Baron, J. S., D. S. Ojima, E. A. Holland, and W. J. Parton. 1994. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems. Biogeochemistry 27:61–82.

    Article  Google Scholar 

  • Belyea, L. R. and B. G. Warner. 1996. Temporal scale and the accumulation of peat in a Sphagnum bog. Canadian Journal of Botany 74:366–377.

    Article  Google Scholar 

  • Botch, M. S., K. I. Kobak, T. S. Vinson, and T. P. Kolchugina. 1995. Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochemical Cycles 9:37–46.

    Article  CAS  Google Scholar 

  • Charman, D. J., R. Aravena, and B. G. Warner. 1994. Carbon dynamics in a forested peatland in north-eastern Ontario, Canada. Journal of Ecology 82:55–62.

    Article  Google Scholar 

  • Chimner, R. A. 2000. Carbon dynamics of Southern Rocky Mountain fens. Ph.D. Dissertation. Colorado State University, Ft. Collins, CO, USA.

    Google Scholar 

  • Clymo, R. S. 1984. The limits to peat bog growth. Philosophical. Transactions of the Royal Society of London B 303:605–654.

    Article  Google Scholar 

  • Clymo, R. S., J. Turunen, and K. Tolonen. 1998. Carbon accumulation in peatland. Oikos 81:368–388.

    Article  Google Scholar 

  • Fall, P. L. 1997a. Timberline fluctuations and late Quaternary paleoclimates in the Southern Rocky Mountains, Colorado. Geological Society of America Bulletin 109:1306–1320.

    Article  Google Scholar 

  • Fall, P. L. 1997b. Fire history and composition of the subalpine forest of western Colorado during the Holocene. Journal of Biogeography 24:309–325.

    Article  Google Scholar 

  • Francez, A. J. and H. Vasander. 1995. Peat accumulation and peat decomposition after human disturbance in French and Finnish mires. Acta Ecologica 16:599–608.

    Google Scholar 

  • Frolking, S., N. Roulet, T. Moore, P.J.H. Richard, P. Lafleur, J. Bubier, and P. Crill. 2001. Modeling short-term and long-term carbon accumulation in northern peatlands. International Work-shop on Carbon Dynamics of Forested Peatlands: Knowledge Gaps, Uncertainty and Modelling Approaches. Edmonton, Alberta, Canada.

    Google Scholar 

  • Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195.

    Article  Google Scholar 

  • Guertin, D. P., P. K. Barten, and K. N. Brooks. 1987. The peatland hydrologic impact model: development and testing. Nordic Hydrology 18:79–100.

    Google Scholar 

  • IPCC Climate Change, 1995. The science of climate change. p. 1–572. In: J. T. Houghton, L. G. Meiro Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.) Contribution of working group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kelly, R. H., W. J. Parton, G. J. Crocker, P. R. Grace, J. Klir, M. Körschens, P. R. Poulton, and D. D. Richter. 1997. Simulating trends in soil organic carbon in long-term experiments using the century model. Geoderma 81:75–90.

    Article  Google Scholar 

  • Lappalainen, E. 1996. General review on world peatland and peat resources. p. 53–56. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyska, Finland.

    Google Scholar 

  • Maltby, E. and M. C. F. Proctor. 1996. Peatlands: their nature and role in the biosphere. p. 11–19. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyska, Finland.

    Google Scholar 

  • Metherell, A. K., L. A. Harding, C. V. Cole, and W. J. Parton. 1993. CENTURY Soil organic matter model environment, technical documentation, Agroecosystem version 4.0. U.S. Department of Agriculture, Agricicultural Research Service, Fort Collins, CO, USA. Great Plains System Research Unit Technical Report No. 4.

    Google Scholar 

  • Moore, T. R. 1989. Plant production, decomposition, and carbon efflux in a subarctic patterned fen. Arctic and Alpine Research 21:156–62.

    Article  Google Scholar 

  • Nykänen, H., J. Alm, J. Silvola, K. Tolonen, and P. J. Martikainen. 1998. Methane fluxes on boreal peatlands on different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles 12:53–69.

    Article  Google Scholar 

  • Ovenden, L. 1990. Peat accumulation in northern wetlands. Quaternary Research 33:377–386.

    Article  Google Scholar 

  • Parton, W. J., J. M. O. Scurlock, D. S. Ojima, T. G. Gillmanov, R. J. Scholes, D. S. Schimel, T. Kirchner, J. C. Menaut, T. Seastedt, E. Garcia Moya, A. Kamnalrut, and J. L. Kinyamario. 1993. Observation and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7:785–809.

    Article  CAS  Google Scholar 

  • Raich, J. W., W. J. Parton, P. M. Vitousek, A. E. Russell, and R. L. Sanford, Jr. 2000. Analysis of factors regulating ecosystem development on Mauna Loa using the Century model. Biogeochemistry 51:161–191.

    Article  Google Scholar 

  • Reader, R. J. and J. M. Stewart. 1972. The relationship between net primary production and accumulation for a peatland in southeastern Manitoba. Ecology 53:1021037.

    Article  Google Scholar 

  • Robinson, S. D. and T. R. Moore. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochemical Cycles 13:591–601.

    Article  CAS  Google Scholar 

  • Saarinen, T. 1996. Biomass and production of two vascular plants in a boreal mesotrophic fen. Canadian Journal of Botany 74:934–938.

    Article  Google Scholar 

  • Siegel, D. I. and P. H. Glaser. 1987. Groundwater flow in a bog-fen complex, Lost River peatland, northern Minnesota. Journal of Ecology 75:743–754.

    Article  Google Scholar 

  • Silvola, J., J. Alm, U. Ahlholm, H. Nykänen, and P. J. Martikainen. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology 84:219–228.

    Article  Google Scholar 

  • Smith, P., J. U. Smith, D. S. Powlson, W. B. McGill, J. R. M. Arah, O. G. Chertov, K. Coleman, U. Franko, S. Frolking, D. S. Jenkinson, L. S. Jenson, R. H. Kelly, H. Klien-Gunnewick, A. S. Komarov, C. Li, J. A. E. Molina, T. Mueller, W. J. Parton, J. H. M. Thornley, and A. P. Whitmore. 1997. A comparison of the performance of nine soil organic models using datasets from seven long-term experiments. Geoderma 81:153–225.

    Article  Google Scholar 

  • Thomas, K. L., J. Bernstead, K. L. Davies, and D. Lloyd. 1996. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biology and Biochemistry 28:17–23.

    Article  Google Scholar 

  • Warner, B. G., R. S. Clymo, and K. Tolonen. 1993. Implications of peat accumulation at Point Escuminac, New Brunswick. Quaternary Research 39:245–248.

    Article  Google Scholar 

  • Waughman, G. J. and D. J. Bellamy. 1980. Nitrogen fixation and the nitrogen balance in peatland ecosystems. Ecology 61:1185–1198.

    Article  CAS  Google Scholar 

  • Webber, P. J. and D. E. May. 1977. The magnitude and distribution of belowground structures in the alpine tundra of Niwot Ridge Colorado. Arctic and Alpine Research 9:157–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney A. Chimner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimner, R.A., Cooper, D.J. & Parton, W.J. Modeling carbon accumulation in Rocky Mountain fens. Wetlands 22, 100–110 (2002). https://doi.org/10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2

Key Words

Navigation